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A coprime array receiver processes a collection of received-signal snapshots to estimate the autocorre-
lation matrix of a larger (virtual) uniform linear array, known as coarray. By the received-signal model,
this matrix has to be (i) Positive Definite, (ii) Hermitian, (iii) Toeplitz, and (iv) its noise-subspace eigen-
values have to be equal. Existing coarray autocorrelation matrix estimates satisfy a subset of the above
conditions. In this work, we propose an optimization framework which offers a novel estimate satisfying
all four conditions: we propose to iteratively solve a sequence of distinct structure-optimization prob-
lems and show that, upon convergence, we provably obtain a single estimate satisfying (i)-(iv). Numerical
studies illustrate that the proposed estimate outperforms standard counterparts, both in autocorrelation
matrix estimation error and Direction-of-Arrival estimation.
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1. Introduction

I Direction-of-Arrival (DoA) estimation, coprime arrays offer in-
creased Degrees-of-Freedom (DoF) and enable the identification of
more sources than sensors compared to equal-length uniform lin-
ear arrays [1-13]. Coprime arrays have been successfully employed
in applications such as beamforming design [14-16] and space-
time processing [17], to name a few. Other non-uniform arrays
with increased DoF and closed-form expressions are the nested
and MISC arrays [18,19]. Intelligent processing of the autocorre-
lations of the physical array’s elements enables the estimation of
a signal subspace corresponding to a larger (virtual) array known
as ‘coarray’ which, in general, is non-uniform. Commonly, only
a segment of the coarray is retained wherein the elements are
uniformly spaced. Alternatively, some works employ interpolation
methods to fill the ‘gaps’ of the full coarray. In this work, we con-
sider only the uniform segment of the coarray for simplicity. Our
result is straightforwardly extended to the full coarray after its
gaps are filled by existing interpolation methods (e.g., [20-22]).

A coprime array receiver processes the autocorrelations of the
physical-array’s elements and estimates the autocorrelation matrix
of the coarray. By the received-signal model, the nominal autocor-
relation matrix of the coarray has a specific structure: it is (i) Pos-
itive Definite (PD), (ii) Hermitian, (iii) Toeplitz, and (iv) its noise-
subspace eigenvalues are equal. In practice, the autocorrelations of
the physical-array’s elements are estimated by processing a col-
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lection of received-signal snapshots and diverge from the nominal
ones. Accordingly, existing approaches offer autocorrelation-matrix
estimates which diverge from the nominal one, while at the same
time, violate at least one of the above structure-properties.

In this work, we propose an optimization framework for com-
puting an improved coarray autocorrelation-matrix estimate that
satisfies properties (i)-(iv). In practice, we iteratively solve a se-
quence of distinct structure-optimization problems, obtaining upon
convergence, an improved estimate that satisfies properties (i)-(iv).
The proposed framework is accompanied by formal convergence
analysis. Our studies illustrate that the proposed method outper-
forms standard counterparts, both in estimation error and DoA es-
timation.

2. Signal model and problem statement

We consider coprime integers M < N and design coprime ar-

ray with L% 2M + N — 1 elements at locations ﬁd:Ef{(i - 1)M8}f"=1

U{iN8§}2M-1 where § = % is the reference inter-element spacing
and A is the wavelength [23]. Narrow-band signals impinge on the
array from K < MN + M sources with DoAs (~)d='3f{91,92, ..., 0} un-
der carrier frequency f. and propagation speed c. Under far-field
conditions, the kth source-signal impinges on the array from di-
rection 6,e(—3, 5| with respect to the broadside. Sensor element-

locations are described by pd=8fsort(£), where sort(-) sorts the ele-

ments of its input argument in ascending order. The array-response

vector of source k is S(Q,C)Ef[v(Gk)[p]l,U(Gk)[p]z,...,v(Q,C)[p]L]T,

where v(6y) d=Efexp(—@ sin(f;)) and (-)T denotes the transpose

operation. Accordingly, the receiver collects received-signal snap-
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shots of the form

K
Yq dZEst(ek)xq,k + l'lq € CL’ (1)

k=1
where x, ;~CN (0, dy) and ng~CN (0, 0%1;), model the gth sym-
bol transmitted by the kth signal-source (power-scaled and flat-
fading-channel processed) and Additive White Gaussian Noise, re-
spectively. CAN(u,C) denotes the complex normal distribution
with mean g and covariance matrix C. For any integer x > 1,
0, =[0,0,...,0]" e R*. Received-symbols are uncorrelated across
snapshots and sources. Noise-variables are uncorrelated from re-
ceived symbols. The receiver’s objective is to identify ® from the
collected snapshots. Next, we briefly review standard coprime ar-
ray processing.

Physical-Array Autocorrelation Matrix: The nominal received-

signal autocorrelation matrix of the physical array is given by R,
Gl'EfIE{yqu} = Sdiag(d)S" + o%I;, where (- )” denotes the conjugate-
transpose (or, Hermitian) operation. S :[5(91), ...,8(6k)] and
d—ef[d1, ...dg]" denote the array-response matrix and source-
power vector, respectively. Since ©, d, and o2 are in practice un-
known to the receiver, R, can not be directly computed and is esti-
mated based on Q received-signal snapshots by ﬁy def 1 Zq 1yqu

Autocorrelation Sampling: Nominally, the receiver processes
Ry and computes the autocorrelation-vector rdéfvec(Ry) =5,
a(6,)d, + o%i;, where a(6y) defs(é’k)* ®s(6;) and i, d=Efvec(lL). Op-
erators'®’ and vec(-) denote the Kronecker product [24] of matri-
ces and vectorization operation of a matrix, respectively. For j e
[121%1, ..., 12}, it holds [@a@]j=vB)". ne A% sort({ny —ny |
ny, ny € £}). The element-locations of the uniform segment of the
coarray are described by

BEmeal1-U<n<l' -1}, )
where L/ d=efMN+M. For every n € B, the receiver discards dupli-
cates by selecting any single index j, € [L?] such that [a(6})] in =
v(6)". That is, the receiver forms selection-sampling matrix

def

Esel = [ejl,ylz’""e]'L/,lez]’ (3)
where for any p<PeNy, e,p is the pth column of I, and com-
selr = Zf 1 dsel (91<)dk + UzeL/,2L/—l’ where Age] (9k)
ELa0) =[v@O)'"", ... .v@) . In
~def

autocorrelation- vector r is estimated by r_vec(Ry) and rg

putes rsel lefgT

defg practice, the

is estimated by T, rsel = Eselr

Coarray Autocorrelation Matrix: The receiver applies a rank-
enhancement approach on r (or, Ty in practice) to form the
autocorrelation matrix of the coarray. Commonly, the Augmented
Matrix [25] and Spatial Smoothing [23]| approaches are employed.
According to the augmented matrix approach, the receiver com-
putes

Rom &F(Iy ® 1) € T, “)

where Fd:Ef[F1, F,,...,F,] and, for every m e [L'], Fy d:ef[OL/X(L/_m),
I/, 0/, (m_1)]- Ram has full-rank, is PD, Hermitian, Toeplitz, and co-
incides with the autocorrelation matrix of the coarray

Reo = Scodlag(d)s +0%lp, (5)

where [Scolm k d:Efv(Qk)m*, for every m € [L'] and k € [K]. Accord-
ing to the spatial-smoothing approach [23], in the case of known

statistics, the receiver computes the spatially-smoothed matrix

def
R, & 1 RamRaHm which is not an autocorrelation matrix but an au-

tocorrelatlon matrix is extracted from it as a scaled version of its
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principal square root
1
Ry & VI'RZ,. (6)

We notice that RamRam = Ram = I'Rgs. Moreover, Rss admits Sin-
gular Value Decomposition (SVD) Rgs YdyAVH which implies that
Rpsr:U(ﬁA%)VH =Ram. That is, Rysr and Ram both coincide
with Re. Here, we note that in the (ideal) case of known statis-
tics to the receiver, all estimates above coincide with the nominal
autocorrelation matrix of the coarray and satisfy (i)-(iv). However,
in the practical case of unknown statistics (case of interest) to the
receiver, the estimates above diverge from R¢, and satisfy only a
subset of (i)-(iv): The augmented matrix approach of [25] proposed
to substitute the sampling matrix Es, by the averaging sampling
matrix

Eavg |J ; Z e]Lz,.. |J/ Z eJLz s (7)
1= L jedp L 167L’ 1

where for every ne B, Jn={je[L?]|[a(f)];=v(0)"}. substi-
tutmg Tsel DY Tavg _EIVgA] Accordingly, Re, is estimated by

Ram = F(IL/ ® ra\,g) Importantly, it holds that Ram is Hermltlan and
Toeplitz, however, it’s not guaranteed to be PD. That is, Ram can
be an indefinite estimate of R¢, [25]. Similarly, Rss and Rps; are es-

timated by Res = I RamRam and Rpg d_fx/ﬁii, respectively, where
ﬁam =F(y, ®?se1)~ Ram can be an indefinite matrix. In view of
the above, ﬁpsr is by construction a PD and Hermitian matrix esti-
mate of the coarray autocorrelation matrix, however, it violates the
Toeplitz structure-property of Re. It follows that ﬁpsr and Rym no
longer coincide, however, their left-hand singular-valued singular
vectors span the same signal subspace. For the unknown statistics
case, we summarize the above estimates in Table 1, where for each
estimate we mention the employed autocorrelation sampling ap-
proach. Moreover, for each structure property guaranteed to be sat-
isfied, we place a ‘,/, otherwise, we place a ‘X’. Given a coarray au-
tocorrelation matrix estimate R e {ﬁam, ﬁam, ﬁpsr}, a standard DoA
estimation approach-e.g., MUItiple Slgnal Classification (MUSIC)-is
applied for identifying the DoAs in ®.

def 135

3. Proposed autocorrelation-matrix estimate

We propose an algorithm which iteratively solves a sequence
of optimization problems returning, upon convegrence, an im-
proved coarray autocorrelation matrix estimate. Motivated by [26],
where it was formally proven that averaging autocorrelation sam-
pling attains superior autocorrelation estimates compared to se-
lection sampling with respect to the Mean-Squared-Error (MSE)
metric, we propose to initialize the proposed algorithm to Py =

%ﬁamﬁ’;’m. At iteration i > 0, the proposed algorithm computes

Q =Py, (8)
Ri = ¥(Q). (9)
P = Q(Ry), (10)

where for any X=X e CP*P with Eigenvalue Decomposition
(EVD) X ' udiag(1, )UH the following hold.

1 If the nominal statistics are known, s and rag = E;,gr coincide. The latter does
not hold if ry and ra are estimated by Ty and Ty, respectively.

2 ﬁam and ﬁam denote the augmented matrix approach estimates combined with
averaging and selection sampling, respectively.
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Table 1
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Comparison of coarray autocorrelation matrix estimates: autocorrelation sampling approach and structure properties.

Matrix estimate Autocorrelation sampling approach  Positive Definite  Toeplitz ~ Hermitian = Equal noise-subspace eigenvalues
Ram Selection X N N X
ﬁam Averaging X N N X
ﬁpsr Averaging Vv X N X
Structured (proposed)  Averaging Vv Vv Vv Vv
du(?i) z(X) Proof.
Xl X [X]13‘ AXT14 ITII2 = Z d;(T) I3 = Z 5= (13 i) 1o 13
. i=1-D i=1-D
X [X1i- [X ]y [X]Z 5 [Xlyg-, D-1 (17 di(X))?
= _ ATD-i| T 2
[ X155 (X555 [X]33 IXl54 HZ_D e el )
(X (Xl Xz [Xlig
4,111 4,2 43 R X _ _
L \ R - = ap Upjdi(R))* di(X)? 221 1y 12 0di(X) |12

d,z(X)

Fig. 1. Illustration of the ith diagonal of X € C**4, d;(X), i € {0, £2}.

Definition 1. ®(X) returns the nearest Toeplitz matrix, in the

Euclidean norm sense® to X: ®(X) % argmin ||X — T, |2, where
Toe7P

TP LT € €PXD | T is Toeplitz}.

Definition 2. W (X) returns the nearest Positive Semidefinite (PSD)

matrix to X: ¥ (X) & argmin ||X — X, |2, where s? defip ¢ cDxD |
Xoes?

A = Af>0}.

Definition 3. Q(X) performs an eigenvalue-correction operation
to the D— p smallest eigenvalues of X. For some general p e

{1,...,D-1}, QX) derdialg(XX)U”, where

B [A, i i<D-p+1,

Bdi=100 S iyl i=D-prt. (1)
j=p+1

In view of the above, the proposed algorithm seeks to optimize
the D — p smallest eigenvalues of the autocorrelation matrix esti-
mate at which it is initialized while preserving the PSD, Hermitian,
and Toeplitz structure. Next, we conduct formal convergence anal-
ysis of the proposed algorithm.

Consider arbitrary X = XF ¢
nal of X (see Fig. 1) such that

CPxD and let d;(X) denote a diago-

i<O0,

i~o0 (12)

(X1} j+i-

forany je{1,2,..., D

[di(X)]; = {IX]H 5

— |i|}. The following remarks hold.
Remark 1. It holds that d;(X) = d (X), if |i| = [{'].

def

Remark 2. Let T= &(X) = minTOeTD ||X Toll2. For any ie{1-
D,...,D—1}, it holds that d;(T) = 5= M D i d;(X)1p_j;; where, for
any integer x> 1, 1y =[1,1,...,1]" e R*.

Remark 2 illustrates that the nearest Toeplitz matrix to X can
be found in closed-form.

def

Remark 3. Let T= ®(X). It holds that ||T||Z < [ X||2.

3 Otherwise known as Frobenius norm: || - |2 returns the sum of the squared en-
tries of its argument.

=Xz (14)

B T )

i=1-D i=1-D

D — il

By Remark 3, T is the nearest Toeplitz matrix to X and exhibits
squared Frobenius norm lower or equal than that of X.

Remark 4. Let T% & (X) admit EVD* T = Udiag(A;)UH.5 It holds

that || T||z=Tr(Udiag(Ar)diag(Ar)U)=||Ar|13.
Remark 5. Let T%'®(X) admit EVD T = Udiag(A7)UH and de-
fine P such that P = Udiag(Ap)U", where® Ap = Af-ie., Vie[D],
[Ap]; = max{[Ar];, 0}. It holds that P is the solution to min.||T —
POeS
P0||§. A proof for Remark 5 was first offered for real matrices in
[27]. For completeness purposes, we offer an analogous proof for
complex-valued matrices.

Proof. Consider Hermitian T € CP*P with EVD T = Udiag(Ar)U",
U is unitary (i.e., UU¥ = UHU =1p). Let H = UHPyU which implies
that Py = UHU". It holds

. . 2
min, [diag(Ar) — H||?

min ||T — Pg||3
min I oll7

D
= min, Z[H] 42 (rli—[H]i)? (15)
i !
D
> Y HE+ ) ((Arli—[H]) > > Ar]7. (16)
i i1 ie{1.2,..D|[Ar];<0}

ij

i#j

Similar to [27], the lower bound in (16) is attained by matrix
H = diag(Ap) for Ap such that [Ap]; = max{[A7];,0}. O

By Remark 5, the nearest PSD matrix to T can be found in
closed-form.

Remark 6. For P = W(T), it holds that |P||Z < ||T||2. Formally,
IPIZ=(1Apll2 = 24 [Ap]? < X204 [A7]2 = [IT12.

By Remark 6, P is the nearest PSD matrix to T and attains
squared Frobenius norm lower or equal than that of T.

4 A Hermitian matrix A can be expressed as A=UAU", where A is an upper diag-
onal with the eigenvalues of A in its main diagonal. If A is normal (i.e., AA"=AHA),
then A is diagonal. Every Hermitian matrix is normal.

5 For any normal matrix W, we denote its eigenvalues by vector A,y. For instance,
Ar denotes the eigenavalues of T while Ap denotes the eigenvalues of P.

6 )J returns a vector with length equal to that of A; with the positive entries of
Ar intact and its negative entries set to zero.
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Fig. 2. Visual illustration of Proposition 1. (M,N)=(2,3), © ={-43°,-21°,
—10°,17°,29°, 54°}, d;=0 dB Vk, 02=1, Q=50.

Remark 7. Let A = Q(P) = Udiag(A,)U", where

[Ap]i, i<D-p+1,
o D
[)‘Alz = lep Z [XP]j, i~D-— 0+ 1, (17)
Jj=p+1
for pe{l,..., D —1}. It holds that [|A]|Z < ||P||2.
Proof.
2
D D-p 1 D
AR = D al=D s +o{ = Y [Ael
i=1 i=1 P j=D—p+1
D-p D
= Yl + Y E =PI (18)
i=1 j=D—p+1

O

By Remark 7, the eigenvalue correction operation on a normal
matrix returns a matrix with squared-Frobenius norm lower or
equal than that of its input argument. In view of Remarks 1-7, the
following Proposition derives.

Proposition 1. For Q;R;, and P;,; in (8)-(10), it holds that
QilIZ=IIR; 2= 1P 122 1Qi 1[I = ... = OVi=0.

Proposition 1 states that the proposed algorithm is guaranteed
to converge. In practice, one can terminate the iterations when
P, —P;]| <€, for some € > 0. For sufficiently small €, Proposi-
tion 1 implies that, at convergence, P;,; = R; = Q; which, in turn,
implies that the algorithm converged to a PD, Hermitian, and
Toeplitz matrix the noise-subspace eigenvalues of which are equal.
A visual illustration of Proposition 1 and a pseudocode of the
proposed algorithm are offered in Fig. 2 and Fig. 3, respectively.
Importantly, Vi > 0, the Algorithm of Fig. 3 computes Q;, R;, P
by closed-form expressions with cost at most the cost of EVD-
i.e., O(D3). Overall, the cost of the proposed algorithm is ©O(TD?)
where T is the number of iterations required for convergence.

4. Numerical studies

We consider coprime naturals (M, N) = (3,5) and form coprime
array with L =10 elements. Source-signals impinge on the ar-
ray from K =13 DoAs {6};2,. 6 = (=75 + (k — 1)12)°. The noise
variance is set to o2 = 0dB. All sources emit signals with equal
power dj, = a?dB. Accordingly, the Signal-to-Noise Ratio SNR = o2,
The receiver collects Q e {150, 300, 450, 600} received-signal snap-
shots. For every Q, we consider A =3000 statistically indepen-
dent realizations of noise; i.e., {y,_l,‘..,yr,Q}rAﬂ. At every realiza-
tion r, we compute coarray autocorrelation matrix estimates corre-
sponding to the augmented matrix approach (AM), principal square
root of the spatial smoothed matrix (PSR), nearest Hermitian, PSD,
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and Toeplitz (H-PSD-T) approach of [22]7, and the proposed struc-
tured estimate. We take a moment and discuss similarities and
differences between H-PSD-T and the proposed framework: (1) H-
PSD-T is guaranteed to satisfy the Toeplitz, Hermitian, and Pos-
itive Semidefinite structure properties while the proposed esti-
mate is guaranteed to satisfy all four, (2) H-PSD-T requires tun-
ing of an ad-hoc parameter that moderates overfitting while the
proposed framework is ad-hoc parameter free, and (3) H-PSD-T
computes an estimate by iterative solvers for convex optimization
problems while the proposed approach enjoys closed-form solu-
tions for each individual optimization problem in its sequence. For
every method and estimate R, at realization r, we compute the
Normalized Squared Error

NSE(R:) = [|R: — Reo|? | Reo || 2. (19)

Then, we compute the Root Mean Normalized Squared Error

RMNSE =

1 & ~
x > NSE(R:). (20)
r=1

In Fig. 4(a) and Fig. 4(d), we plot the RMNSE versus sample sup-
port, Q, for SNR = —4dB and SNR = 2dB, respectively. Expectedly,
we observe that all methods employing averaging-sampling per-
form similarly well. The proposed estimate attains superior estima-
tion performance across the board. Moreover, we notice the sen-
sitivity of H-PSD-T with respect to the ad-hoc parameter u; e.g.,
for SNR = —4dB, H-PSD-T with p = 1.5 exhibits low performance
while for SNR = 2dB it exhibits high estimation performance.

Thereafter, we consider that the nominal coarray autocorrela-
tion matrix admits SVD Reo = Qo ZcoVE, + 02Qe0QL, where Qg
and Q, correspond to the signal and noise subspace bases, respec-
tively. Similarly, every coarray autocorrelation matrix estimate R
admits SVD R, = Q;X,VH + Q,Z,VH, where Q, denotes the signal-
subspace-basis of the K dominant left-hand singular valued singu-
lar vectors of ﬁr. At each realization and for every value of Q, we
compute the Normalized Squared Subspace Error

NSSE@Q) = Q-Q" — QeoQf}[12(2K) 1. (21)

Then, we compute the Root Mean Normalized Squared Sub-
space Error

A
%ZNSSE(Q,). (22)

r=1

In Fig. 4(b) and Fig. 4(e), we plot the RMN-SSE versus sample
support for SNR = —4dB and 2dB, respectively. We notice the influ-
ence of the ad-hoc parameter u with respect to H-PSD-T and ob-
serve that the proposed structured estimate clearly outperforms all
counterparts across the board in subspace estimation performance.

Next, for every value of sample support and realization r, we
conduct DoA estimation by applying MUSIC on the estimate R,
which returns estimates {6 ,}¥_, [26]. Then, we measure the Root
Mean Squared Error

11 A K R
RMSE = KEZZ(ek—GM)Z (23)

r=1 k=1

RMN-SSE =

and illustrate the corresponding RMSE curves versus sample sup-
port Q, in Fig. 4(c) and Fig. 4(f), for SNR = —4dB and 2dB, re-
spectively. We include the Cramér Rao Lower Bound (CRLB) curves
as benchmarks [28]. We notice that the performances of standard

7 H-PSD-T seeks a Hermitian-PSD-Toeplitz matrix which fills the gaps of the
coarray. Wheg the uniform segment of the coarray is considered, H-PSD-T returns
argmin ||R — Ram [|I2+[R|.. where w|IR||. is a regularization term that moderates

ResY

overfitting.
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Algorithm 1. Structured coarray autocorrelation matrix estimation

Input: Coarray autocorrelation matrix estimate R

0: Py« R % Initialization

1:  Until convergence/termination

2: Q, « ®(P,) % Nearest Toeplitz to P,
3: R, « ¥(Q,) % Nearest PSD to Q,

4: P.,, < QR,) % Eigenvalue-correction

Return: R < P,

Fig. 3. Proposed structured coarray autocorrelation matrix estimation.

0.3 T J T T 8 : T
——Proposed —Proposed — Proposed
—o—AM w/ selection 0.2 —o—AM w/ selection 1 P
0.25 —o—AM w/ averaging : —o—AM w/ averaging g 6"
w =»=-PSRw/ avgraging I(./IJ) —*-PSR w/ averaging 9] —«-PSR W/ avergging
0 = H-PSD-T w/ averaging /i=0:1"1 (5 0.15 D-T w/ averaging ;=0.1 - = .
g 0.2 PSD-T w/ averaging p=1.5 = raging p=1.5 §4 % _H-PSD-T w/averaging =0.1
[ 2 w I
0.15 0.1 ‘é’
T2
0.1 0.05
150 300 450 600 150 300 450 600 150 300 450 600
Sample support, Q Sample support, Q Sample support, Q
(a) SNR = —4dB. (b) SNR = —4dB. (c) SNR = —4dB.
0.3 T T . . 8 : T
——Proposed ——Proposed — Proposed
0251 ——AM w/ selection 0.2 —e—AM w/ selection . —o—AM w/ selection
: —Oo~AM w/ averaging ’ —o—AM w/ averaging B6] AM-w/ averaging
w —>-PSR w/ averaging w - -PSR w/ averaging S - »-PSR w/ av&raging
% 0.2 = H-PSD-T w/ averaging u=0.1 | ¢35 0.15 = H-PSD-T w/ averaging ;=0.1 5% = H-PSD-T w/ averaging ;=0.
< H-PSD-T w/ averaging u=1.5 | = H-RSD-T w/ averaging p=1.5 T4 o H-PSD-T w/ averaging p=1.5
= L -
[an £ o4 @ CRLB
0.15 . 2
o2
0.1 0.05
L L O __________ o= === == L EEE L L X EE X
150 300 450 600 150 300 450 600 150 300 450 600
Sample support, Q Sample support, Q Sample support, Q
(d) SNR = 2dB. (e) SNR = 2dB. (f) SNR = 2dB.

Fig. 4. Root Mean Normalized Squared Error (RMNSE) with respect to (w.r.t.) R, Root Mean Normalized - Subspace Squared Error (RMN-SSE) w.r.t. Q. and Root Mean

Squared Error (RMSE) w.r.t. ® versus sample support for varying SNR e {—4, 2}dB.

counterparts (AM, PSR) deviate significantly from the CRLB. In con-
trast, the proposed coarray autocorrelation matrix estimate outper-
forms all counterparts by at least 0.3° and at most 2°. In addition,
as Q increases, its performance curves approach the CRLB curves.

5. Conclusions

We proposed an optimization framework which computes a
structured coarray autocorrelation matrix estimate. The proposed
algorithm is accompanied by convergence analysis and is guaran-
teed to return a coarray autocorrelation matrix estimate satisfying
all structure properties of the true autocorrelation matrix. Numer-
ical studies illustrate the enhanced performance of the proposed
estimate compared to standard counterparts, both in autocorrela-
tion matrix estimation error and DoA estimation.
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